Search results

1 – 1 of 1
Open Access
Article
Publication date: 14 June 2019

Elfadil Mohamed Elbashier, Elfadil Mohammed Eltayeb Elbashier, Siddig Esa Idris2, Wuletaw Tadesse, Izzat S.A. Tahir, Abu Elhassan S. Ibrahim, Ashraf M.A. Elhashimi, Sefyan I. Saad, Amani Ahmed Idris and Hala Mohamed Mustfa

The purpose of this paper was to study the genetic variability, heritability, heat tolerance indices and phenotypic and genotypic correlation studies for traits of 250 elite…

2273

Abstract

Purpose

The purpose of this paper was to study the genetic variability, heritability, heat tolerance indices and phenotypic and genotypic correlation studies for traits of 250 elite International Center for Agricultural Research in the Dry Areas (ICARDA) bread wheat genotypes under high temperature in Wad Medani, Center in Sudan.

Design/methodology/approach

Bread wheat is an important food on a global level and is used in the form of different products. High temperature associated with climate change is considered to be a detrimental stress in the future on world wheat production. A total of 10,250 bread wheat genotypes selected from different advanced yield trials introduction from ICARDA and three checks including were grown in two sowing dates (SODs) (1st and 2nd) 1st SOD heat stress and 2nd SOD non-stress at the Gezira Research Farm, of the Agricultural Research Corporation, Wad Medani, Sudan.

Findings

An alpha lattice design with two replications was used to assess the presence of phenotypic and genotypic variations of different traits, indices for heat stress and heat tolerance for 20 top genotypes and phenotypic and genotypic correlations. Analysis of variance revealed significant differences among genotypes for all the characters. A wide range, 944-4,016 kg/ha in the first SOD and 1,192-5,120 kg/ha in the second SOD, was found in grain yield. The average yield on the first SOD is less than that of the secondnd SOD by 717.7 kg/ha, as the maximum and minimum temperatures were reduced by 3ºC each in the second SOD when compared to the first SOD of the critical stage of crop growth shown.

Research limitations/implications

Similar wide ranges were found in all morpho-physiological traits studied. High heritability in a broad sense was estimated for days to heading and maturity. Moderate heritability estimates found for grain yield ranged from 44 to 63.6 per cent, biomass ranged from 37.8 to 49.1 per cent and canopy temperature (CT) after heading ranged from 44.2 to 48 per cent for the first and secondnd SODs. The top 20 genotypes are better than the better check in the two sowing dates and seven genotypes (248, 139, 143, 27, 67, 192 and 152) were produced high grain yield under both 1st SOD and 2nd SOD.

Practical implications

The same genotypes in addition to Imam (check) showed smaller tolerance (TOL) values, indicating that these genotypes had a smaller yield reduction under heat-stressed conditions and that they showed a higher heat stress susceptibility index (SSI). A smaller TOL and a higher SSI are favored. Both phenotypic and genotypic correlations of grain yield were positively and significantly correlated with biomass, harvest index, number of spikes/m2, number of seeds/spike and days to heading and maturity in both SODs and negatively and significantly correlated with canopy temperature before and after heading in both SODs.

Originality/value

Genetic variations, heritability, heat tolerance indices and correlation studies for traits of bread wheat genotypes under high temperature

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 1 of 1